

PAR-003-1172002 Seat No. _____

M. Sc. (Statistics) (Sem. II) (CBCS) Examination

August / September - 2020

MS-202: Planning and Analysis of Industrial **Experiments**

Faculty Code: 003

Subject Code: 1172002			
Tin	ne : 2	$\frac{1}{2}$ Hours] [Total Marks	: 70
Ins	truct	ions: (1) Attempt all questions.	
		(2) Each question carries equal marks.	
1	Ans	wer the following questions : (Any Seven)	14
	(1)	Define non-binary Design.	
	(2)	Define Orthogonal Balanced Design.	
	(3)	C matrix is matrix.	
	(4)	A design is said to be balanced design if C-matrix is written as	
	(5)	Difference between Basic Design and factorial Design.	
	(6)	Write Properties of Block design.	
	(7)	Define Binary Design.	
	(8)	Explain parameters of PBIBD and write parametric	
		relation of PBIBD.	
	(9)	RBD is block design.	
	(10)	Write parameters and parametric relation of BIBD.	
2	Answer the following questions: (Any Two)		14
	(1)	Define:	
		(i) Resolvable BIBD	
		(ii) Affine Resolvable BIBD	
		(iii) α -Affine resolvable BIBD. With an Example.	
	(2)	Explain Bose Inequality.	
	(3)	Using Hadamard matrix Construction of BIBD.	
PA	R-003-	-1172002] 1 [Cont	t d

3 Answer the following questions:
(1) Obtain following BIBD using Galois field v = b = 7, r = k = 3, λ = 1.
(2) Define confounding, and explain three types of confounding.

OR

- 3 Answer the following questions: 14
 - (1) Prove that : $\sum_{i=1}^{m} ni \lambda_i = r(k-1)$.
 - (2) Prove that : $\lambda(v-1) = r(k-1)$.
- 4 Answer the following questions: 14
 - (1) Explain 2^3 factorial experiment.
 - (2) Write parameters of PBIBD and prove $\sum_{i=1}^{m} ni = V 1$.
- 5 Answer the following questions: (Any Two) 14
 - (1) Explain Ghosh and Biswas method.
 - (2) Explain Balanced Incomplete block design.
 - (3) Explain partially balanced incomplete block design.
 - (4) For any BIBD show that efficiency factor E < 1. Prove it.